Sunday, November 6, 2016

Matlab Signalverarbeitung Toolbox Moving Average

Dokumentation Dieses Beispiel zeigt, wie gleitende Mittelfilter und Resampling verwendet werden, um die Auswirkungen von periodischen Komponenten der Tageszeit auf die stündliche Temperaturmessung zu isolieren und unerwünschte Leitungsgeräusche aus einer offenen Spannungsmessung zu entfernen. Das Beispiel zeigt auch, wie die Pegel eines Taktsignals zu glätten sind, während die Kanten durch Verwendung eines Medianfilters bewahrt werden. Das Beispiel zeigt auch, wie ein Hampel-Filter verwendet wird, um große Ausreißer zu entfernen. Motivation Glättung ist, wie wir wichtige Muster in unseren Daten zu entdecken, während Sie Dinge, die unwichtig sind (d. H. Rauschen). Wir verwenden Filter, um diese Glättung durchzuführen. Das Ziel der Glättung ist es, langsame Änderungen im Wert zu produzieren, so dass seine einfacher zu sehen, Trends in unseren Daten. Manchmal, wenn Sie Eingangsdaten untersuchen, können Sie die Daten glatt machen, um einen Trend im Signal zu sehen. In unserem Beispiel haben wir eine Reihe von Temperaturmessungen in Celsius genommen jede Stunde am Logan Flughafen für den gesamten Monat Januar 2011. Beachten Sie, dass wir visuell sehen können, die Wirkung, die die Tageszeit auf die Temperaturwerte hat. Wenn Sie sich nur für die tägliche Temperaturschwankung im Laufe des Monats interessieren, tragen die stündlichen Fluktuationen nur zu Lärm bei, was die täglichen Variationen schwer unterscheiden kann. Um den Effekt der Tageszeit zu entfernen, möchten wir nun unsere Daten mit einem gleitenden Mittelfilter glätten. Ein Moving Average Filter In seiner einfachsten Form nimmt ein gleitender Durchschnittsfilter der Länge N den Durchschnitt jeder N aufeinanderfolgenden Samples der Wellenform an. Um einen gleitenden Mittelwertfilter auf jeden Datenpunkt anzuwenden, konstruieren wir unsere Koeffizienten unseres Filters so, dass jeder Punkt gleich gewichtet wird und 1/24 zum Gesamtdurchschnitt beiträgt. Dies gibt uns die durchschnittliche Temperatur über jeden Zeitraum von 24 Stunden. Filterverzögerung Beachten Sie, dass der gefilterte Ausgang um etwa zwölf Stunden verzögert wird. Dies ist auf die Tatsache zurückzuführen, dass unser gleitender Durchschnittsfilter eine Verzögerung hat. Jedes symmetrische Filter der Länge N hat eine Verzögerung von (N-1) / 2 Abtastungen. Wir können diese Verzögerung manuell berücksichtigen. Extrahieren von Durchschnittsdifferenzen Alternativ können wir auch das gleitende Mittelfilter verwenden, um eine bessere Schätzung zu erhalten, wie die Tageszeit die Gesamttemperatur beeinflusst. Dazu werden zuerst die geglätteten Daten von den stündlichen Temperaturmessungen subtrahiert. Dann segmentieren Sie die differenzierten Daten in Tage und nehmen Sie den Durchschnitt über alle 31 Tage im Monat. Extrahieren von Peak Envelope Manchmal möchten wir auch eine glatt variierende Schätzung haben, wie sich die Höhen und Tiefen unseres Temperatursignals täglich ändern. Um dies zu erreichen, können wir die Hüllkurvenfunktion verwenden, um extreme Höhen und Tiefen zu verbinden, die über eine Untermenge der 24-Stundenperiode erkannt werden. In diesem Beispiel stellen wir sicher, dass es mindestens 16 Stunden zwischen jedem extrem hohen und extrem niedrigen Niveau gibt. Wir können auch ein Gefühl dafür, wie die Höhen und Tiefen sind Trends, indem sie den Durchschnitt zwischen den beiden Extremen. Weighted Moving Average Filter Andere Arten von Moving Average Filtern gewichten nicht jede Probe gleichermaßen. Ein weiterer gemeinsamer Filter folgt der Binomialexpansion von (1 / 2,1 / 2) n Dieser Filtertyp approximiert eine Normalkurve für große Werte von n. Es ist nützlich zum Herausfiltern von Hochfrequenzrauschen für kleine n. Um die Koeffizienten für das Binomial-Filter zu finden, falten Sie 1/2 1/2 mit sich selbst und konvergieren dann iterativ den Ausgang mit 1/2 1/2 a vorgeschriebener Anzahl von Malen. Verwenden Sie in diesem Beispiel fünf Gesamt-Iterationen. Ein anderer Filter, der dem Gaußschen Expansionsfilter ähnlich ist, ist der exponentiell gleitende Durchschnittsfilter. Diese Art des gewichteten gleitenden Durchschnittsfilters ist einfach zu konstruieren und erfordert keine große Fenstergröße. Sie passen einen exponentiell gewichteten gleitenden Durchschnittsfilter durch einen Alpha-Parameter zwischen null und eins an. Ein höherer Wert von Alpha wird weniger Glättung haben. Untersuche die Messwerte für einen Tag. Wählen Sie Ihr CountryMoving Average Filter (MA Filter) Loading. Das gleitende Mittelfilter ist ein einfaches Tiefpassfilter (Finite Impulse Response), das üblicherweise zum Glätten eines Arrays von abgetasteten Daten / Signalen verwendet wird. Es benötigt M Abtastwerte von Eingang zu einem Zeitpunkt und nimmt den Durchschnitt dieser M-Abtastungen und erzeugt einen einzigen Ausgangspunkt. Es ist eine sehr einfache LPF (Low Pass Filter) Struktur, die praktisch für Wissenschaftler und Ingenieure, um unerwünschte laute Komponente aus den beabsichtigten Daten zu filtern kommt. Mit zunehmender Filterlänge (Parameter M) nimmt die Glätte des Ausgangs zu, während die scharfen Übergänge in den Daten zunehmend stumpf werden. Dies impliziert, dass dieses Filter eine ausgezeichnete Zeitbereichsantwort, aber einen schlechten Frequenzgang aufweist. Der MA-Filter erfüllt drei wichtige Funktionen: 1) Es benötigt M Eingangspunkte, berechnet den Durchschnitt dieser M-Punkte und erzeugt einen einzelnen Ausgangspunkt 2) Aufgrund der Berechnungen / Berechnungen. Führt das Filter eine bestimmte Verzögerung ein 3) Das Filter wirkt als ein Tiefpaßfilter (mit einer schlechten Frequenzbereichsantwort und einer guten Zeitbereichsantwort). Matlab-Code: Der folgende Matlab-Code simuliert die Zeitbereichsantwort eines M-Point Moving Average Filters und zeigt auch den Frequenzgang für verschiedene Filterlängen. Time Domain Response: Auf dem ersten Plot haben wir die Eingabe, die in den gleitenden Durchschnitt Filter geht. Der Eingang ist laut und unser Ziel ist es, den Lärm zu reduzieren. Die nächste Abbildung ist die Ausgangsantwort eines 3-Punkt Moving Average Filters. Es kann aus der Figur abgeleitet werden, dass der Filter mit 3-Punkt-Moving-Average bei der Filterung des Rauschens nicht viel getan hat. Wir erhöhen die Filterabgriffe auf 51 Punkte und wir können sehen, dass sich das Rauschen im Ausgang stark reduziert hat, was in der nächsten Abbildung dargestellt ist. Wir erhöhen die Anzapfungen weiter auf 101 und 501, und wir können beobachten, dass auch wenn das Rauschen fast Null ist, die Übergänge drastisch abgebaut werden (beobachten Sie die Steilheit auf beiden Seiten des Signals und vergleichen Sie sie mit dem idealen Ziegelwandübergang Unser Eingang). Frequenzgang: Aus dem Frequenzgang kann behauptet werden, dass der Roll-off sehr langsam ist und die Stopbanddämpfung nicht gut ist. Bei dieser Stoppbanddämpfung kann klar sein, daß der gleitende mittlere Filter nicht ein Band von Frequenzen von einem anderen trennen kann. Wie wir wissen, führt eine gute Leistung im Zeitbereich zu einer schlechten Leistung im Frequenzbereich und umgekehrt. Kurz gesagt, der gleitende Durchschnitt ist ein außergewöhnlich guter Glättungsfilter (die Aktion im Zeitbereich), aber ein außergewöhnlich schlechtes Tiefpaßfilter (die Aktion im Frequenzbereich) Externe Links: Empfohlene Bücher: Primäre SeitenleisteDokumentation Dieses Beispiel zeigt, wie Verwenden Sie gleitende Durchschnittsfilter und Resampling, um die Auswirkungen von periodischen Komponenten der Tageszeit auf die stündliche Temperaturablesung zu isolieren und unerwünschte Leitungsgeräusche aus einer offenen Spannungsmessung zu entfernen. Das Beispiel zeigt auch, wie die Pegel eines Taktsignals zu glätten sind, während die Kanten durch Verwendung eines Medianfilters bewahrt werden. Das Beispiel zeigt auch, wie ein Hampel-Filter verwendet wird, um große Ausreißer zu entfernen. Motivation Glättung ist, wie wir wichtige Muster in unseren Daten zu entdecken, während Sie Dinge, die unwichtig sind (d. H. Rauschen). Wir verwenden Filter, um diese Glättung durchzuführen. Das Ziel der Glättung ist es, langsame Änderungen im Wert zu produzieren, so dass seine einfacher zu sehen, Trends in unseren Daten. Manchmal, wenn Sie Eingangsdaten untersuchen, können Sie die Daten glatt machen, um einen Trend im Signal zu sehen. In unserem Beispiel haben wir eine Reihe von Temperaturmessungen in Celsius genommen jede Stunde am Logan Flughafen für den gesamten Monat Januar 2011. Beachten Sie, dass wir visuell sehen können, die Wirkung, die die Tageszeit auf die Temperaturwerte hat. Wenn Sie sich nur für die tägliche Temperaturschwankung im Laufe des Monats interessieren, tragen die stündlichen Fluktuationen nur zu Lärm bei, was die täglichen Variationen schwer unterscheiden kann. Um den Effekt der Tageszeit zu entfernen, möchten wir nun unsere Daten mit einem gleitenden Mittelfilter glätten. Ein Moving Average Filter In seiner einfachsten Form nimmt ein gleitender Durchschnittsfilter der Länge N den Durchschnitt jeder N aufeinanderfolgenden Samples der Wellenform an. Um einen gleitenden Mittelwertfilter auf jeden Datenpunkt anzuwenden, konstruieren wir unsere Koeffizienten unseres Filters so, dass jeder Punkt gleich gewichtet wird und 1/24 zum Gesamtdurchschnitt beiträgt. Dies gibt uns die durchschnittliche Temperatur über jeden Zeitraum von 24 Stunden. Filterverzögerung Beachten Sie, dass der gefilterte Ausgang um etwa zwölf Stunden verzögert wird. Dies ist auf die Tatsache zurückzuführen, dass unser gleitender Durchschnittsfilter eine Verzögerung hat. Jedes symmetrische Filter der Länge N hat eine Verzögerung von (N-1) / 2 Abtastungen. Wir können diese Verzögerung manuell berücksichtigen. Extrahieren von Durchschnittsdifferenzen Alternativ können wir auch das gleitende Mittelfilter verwenden, um eine bessere Schätzung zu erhalten, wie die Tageszeit die Gesamttemperatur beeinflusst. Dazu werden zuerst die geglätteten Daten von den stündlichen Temperaturmessungen subtrahiert. Dann segmentieren Sie die differenzierten Daten in Tage und nehmen Sie den Durchschnitt über alle 31 Tage im Monat. Extrahieren von Peak Envelope Manchmal möchten wir auch eine glatt variierende Schätzung haben, wie sich die Höhen und Tiefen unseres Temperatursignals täglich ändern. Um dies zu erreichen, können wir die Hüllkurvenfunktion verwenden, um extreme Höhen und Tiefen zu verbinden, die über eine Untermenge der 24-Stundenperiode erkannt werden. In diesem Beispiel stellen wir sicher, dass es mindestens 16 Stunden zwischen jedem extrem hohen und extrem niedrigen Niveau gibt. Wir können auch ein Gefühl dafür, wie die Höhen und Tiefen sind Trends, indem sie den Durchschnitt zwischen den beiden Extremen. Weighted Moving Average Filter Andere Arten von Moving Average Filtern gewichten nicht jede Probe gleichermaßen. Ein weiterer gemeinsamer Filter folgt der Binomialexpansion von (1 / 2,1 / 2) n Dieser Filtertyp approximiert eine Normalkurve für große Werte von n. Es ist nützlich zum Herausfiltern von Hochfrequenzrauschen für kleine n. Um die Koeffizienten für das Binomial-Filter zu finden, falten Sie 1/2 1/2 mit sich selbst und konvergieren dann iterativ den Ausgang mit 1/2 1/2 a vorgeschriebener Anzahl von Malen. Verwenden Sie in diesem Beispiel fünf Gesamt-Iterationen. Ein anderer Filter, der dem Gaußschen Expansionsfilter ähnlich ist, ist der exponentiell gleitende Durchschnittsfilter. Diese Art des gewichteten gleitenden Durchschnittsfilters ist einfach zu konstruieren und erfordert keine große Fenstergröße. Sie passen einen exponentiell gewichteten gleitenden Durchschnittsfilter durch einen Alpha-Parameter zwischen null und eins an. Ein höherer Wert von alpha wird weniger Glättung haben. Untersuche die Messwerte für einen Tag. Wählen Sie Ihr LandDokumentation dsp. MovingAverage Systemobjekt Beschreibung Das dsp. MovingAverage-System objectx2122 berechnet den gleitenden Durchschnitt des Eingangssignals entlang jedes Kanals unabhängig über die Zeit. Das Objekt verwendet entweder die gleitende Fenstermethode oder die exponentielle Gewichtungsmethode, um den gleitenden Durchschnitt zu berechnen. Bei der Schiebefenstermethode wird ein Fenster mit spezifizierter Länge über die Daten bewegt, Abtastwert für Stichprobe, und der Mittelwert wird über die Daten im Fenster berechnet. Bei dem exponentiellen Gewichtungsverfahren multipliziert das Objekt die Datenabtastwerte mit einem Satz von Gewichtungsfaktoren. Der Mittelwert wird durch Summieren der gewichteten Daten berechnet. Weitere Informationen zu diesen Methoden finden Sie unter Algorithmen. Das Objekt akzeptiert mehrkanalige Eingaben, dh m - by-n Größeneingaben, wobei m 8805 1 und n gt 1 sind. Das Objekt akzeptiert auch variable Eingaben. Sobald das Objekt gesperrt ist, können Sie die Größe jedes Eingangskanals ändern. Die Anzahl der Kanäle kann sich jedoch nicht ändern. Dieses Objekt unterstützt die C - und C-Codegenerierung. So berechnen Sie den gleitenden Durchschnitt der Eingabe: Erstellen Sie ein dsp. MovingAverage-Objekt und legen Sie die Eigenschaften des Objekts fest. Aufrufschritt, um den gleitenden Durchschnitt zu berechnen. Hinweis: Alternativ können Sie das Objekt mit Argumenten ansprechen, als ob es eine Funktion wäre, anstatt die Schrittmethode zu verwenden, um die Operation auszuführen, die vom Systemobjekt definiert wird. Zum Beispiel führen y-Schritt (obj, x) und y obj (x) gleichwertige Operationen aus. Konstruktion movAvg dsp. MovingAverage gibt ein gleitendes Mittelobjekt, movAvg, zurück. Mit den Standard-Eigenschaften. MovAvg dsp. MovingAverage (Len) setzt die WindowLength-Eigenschaft auf Len. MovAvg dsp. MovingAverage (Name, Wert) legt zusätzliche Eigenschaften mit Name, Wertepaaren fest. Nicht spezifizierte Eigenschaften haben Standardwerte. Wählen Sie Ihr LandDokumentation ist das unbedingte Mittel des Prozesses, und x03C8 (L) ist ein rationales Unendlich-Grad-Lag-Operator-Polynom, (1 x03C8 1 L x03C8 2 L 2 x2026). Anmerkung: Die Constant-Eigenschaft eines arima-Modellobjekts entspricht c. Und nicht das unbedingte Mittel 956. Durch Wolds-Zerlegung 1. Gleichung 5-12 entspricht einem stationären stochastischen Prozeß, vorausgesetzt, daß die Koeffizienten x03C8i absolut summierbar sind. Dies ist der Fall, wenn das AR-Polynom, x03D5 (L). Stabil ist. Dh alle Wurzeln liegen außerhalb des Einheitskreises. Zusätzlich ist das Verfahren kausal, vorausgesetzt das MA-Polynom ist invertierbar. Dh alle Wurzeln liegen außerhalb des Einheitskreises. Econometrics Toolbox forciert Stabilität und Invertierbarkeit von ARMA Prozessen. Wenn Sie ein ARMA-Modell mit Arima angeben. Erhalten Sie einen Fehler, wenn Sie Koeffizienten eingeben, die nicht einem stabilen AR-Polynom oder einem invertierbaren MA-Polynom entsprechen. Ähnlich erfordert die Schätzung während der Schätzung Stationaritäts - und Invertibilitätsbeschränkungen. Literatur 1 Wold, H. Eine Studie in der Analyse stationärer Zeitreihen. Uppsala, Schweden: Almqvist amp Wiksell, 1938. Wählen Sie Ihr Land


No comments:

Post a Comment